Abstract
We present a simple motorized rotation mount for a half-wave plate that can be used to rapidly change the polarization of light. We use the device to switch a high power laser beam between different optical dipole traps in an ultracold atom experiment. The device uses a stepper motor with a hollow shaft, which allows a beam to propagate along the axis of the motor shaft, minimizing inertia and mechanical complexity. A simple machined adapter is used to mount the wave plate. We characterize the performance of the device, focusing on its capability to switch a beam between the output ports of a polarizing beam splitter cube. We demonstrate a switching time of 15.9(3) ms, limited by the torque of the motor. The mount has a reaction time of 0.52(3) ms and a rotational resolution of 0.45(4)°. The rotation is highly reproducible, with the stepper motor not missing a step in 2000 repeated tests over 11h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.