Abstract

This paper gives a scheme of optical fiber positioner structure of a miniature, by use of the DC servo motor with the diameter of 3mm driver, the distance can designed to 8.5mm, and can arrange more than 12000 fibers in the focal plane with the diameter of 1 meters, it is especially suitable for telescope with small dimension focal plane and has high density fiber positioning requirements. Based on the principle of double rotary fiber positioning principle, It consists of a hollow shaft revolving mechanism, and eccentric axis revolving mechanism relative to hollow shaft. The hollow shaft turns round at the range of -180 degrees to +180 degrees and the eccentric axis turns round at the range of -90 degrees to +90 degrees at the half of radius driving by each control motor. When positioning, the optical fiber end moves on the focal plate throughout, and can never deviate from focal plane. optical fiber is fixed in the mounting hole of fiber support which installed on the eccentric rotary shaft (fiber support’s hole axis is parallel to the axis of the hollow shaft), and fiber will lead to pass through the inner hole of the hollow shaft and focal plate then connected to the spectrometer. positioner center shaft adopts planetary gear driving principle, with small module motor’s gear and the fixed ring gear can driving motor and positioner planetary rotate, the eccentric shaft by DC servo motor with the diameter of 3mm drived coaxial optical fiber on the eccentric shaft, the center and the eccentric shafts adopts micro rolling bearing support; in order to prevent the positioner’s center and eccentric shaft to rotate out of bounds, both limiting devices have designed to ensure the safety of fiber positioning; both center and eccentric shaft are designed with a spring structure to eliminate the influence of gear clearance; because positioner size is very small, the positioner driving wire is embedded in the slot of the hollow shaft sleeve wall. This will not affect the fiber go through the center shaft’s holes and pass through the focal plane; positioner sample test results show that the closed-loop positioning can reached accuracy of 0.01mm unit, and can meet with the demand of optical fiber positioning.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.