Abstract

Accurate segmentation of the left ventricle myocardium is the key step of automatic assessment of cardiac function. However, the current methods mainly focus on the end-diastolic and the end-systolic frames in cine MR sequences and lack the attention to myocardial motion in the cardiac cycle. Additionally, due to the lack of fine segmentation tools, the simplified approach, excluding papillary muscles and trabeculae from myocardium, is applied in clinical practice. To solve these problems, we propose a motion-aware DNN model with edge focus loss and quality control in this paper. Specifically, the bidirectional ConvLSTM layer and a new motion attention layer are proposed to encode motion-aware feature maps, and an edge focus loss function is proposed to train the model to generate the fine segmentation results. Additionally, a quality control method is proposed to filter out the abnormal segmentations before subsequent analyses. Compared with state-of-the-art segmentation models on the public dataset and the in-house dataset, the proposed method has obtained high segmentation accuracy. On the 17-segment model, the proposed method has obtained the highest Pearson correlation coefficient at 14 of 17 segments, and the mean PCC of 85%. The experimental results highlight the segmentation accuracy of the proposed method as well as its availability to substitute for the manually annotated boundaries for the automatic assessment of cardiac function.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.