Abstract

Breast cancer is a prominent cause of death among women worldwide. Infrared thermography, due to its cost-effectiveness and non-ionizing radiation, has emerged as a promising tool for early breast cancer diagnosis. This article presents a hybrid model approach for breast cancer detection using thermography images, designed to process and classify these images into healthy or cancerous categories, thus supporting disease diagnosis. Multiple pre-trained convolutional neural networks are employed for image feature extraction, and feature filter methods are proposed for feature selection, with diverse classifiers utilized for image classification. Evaluating the DRM-IR test set revealed that the combination of ResNet34, Chi-square ( ) filter, and SVM classifier demonstrated superior performance, achieving the highest accuracy at . Furthermore, the highest accuracy improvement obtained was when using the SVM classifier and Chi-square filter compared to regular convolutional neural networks. The results confirmed that the proposed method, with its high accuracy and lightweight model, outperforms state-of-the-art breast cancer detection from thermography image methods, making it a good choice for computer-aided diagnosis.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.