Abstract
The contact resistance of metal/graphene is becoming a major limiting factor for graphene devices. Among various kinds of contact resistance test methods, the transmission line model is the most common approach to extract contact resistance in graphene devices. However, experiments show that in some cases there exists large inaccuracy and instability using this method. In this study, we added a cross-bridge structure at the terminal of the transmission line as a supporting test. This modified transmission line measurement structure can easily compare not only the transmission line and Kelvin contact resistance, getting a more reliable value, but also the other contact-related parameters, such as specific contact resistivity, transfer length and the graphene sheet resistance under and outside contact metal at the same time. The new measurement test is very helpful in enabling us to study the contact property accurately. The specific contact resistivity in our experiment is in the range of 2.0 × 10−6 Ω · cm2 and 3.0 × 10−6 Ω · cm2 at room temperature. With the temperature decreasing from 290 K to 60 K, the transfer length fluctuates around 1.7 μm, and the specific contact resistivity reduces to less than 2.0 × 10−6 Ω · cm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.