Abstract

The front grid contact is particularly important and requires a low contact resistance which represents the resistance associated with the barrier at the interface of the metal and semiconductor contact structure. Often applied metal contacts are fired at a higher temperature (typically above 700 °C) in air ambient, which produces ohmic contact on both surface of the photovoltaic device. The specific contact resistance is one of the important device parameter on studying the interfacial properties of the metalization system. Therefore, a reliable methodology to assess the ohmic losses of the applied metal contact structure is required. It shows that it is rather simple and reliable to assess the electrical quality of the applied metal contacts by quantifying the total ohmic losses of the solar cell associated with the various resistive components of the solar cell normalized to unit cell area. It has been recently demonstrated that with a new experimental procedure, namely iteration method based on the calculation of power loss (ICPL) associated with the contact resistance of the front Ag thick-film metal contacts, a much reliable value of the specific contact resistance of the order of ≅10−5 Ω cm2 can be extracted for the planar ohmic contacts. In this work, the specific contact resistance of the planar ohmic contacts formed on the heavily doped n+ region of the solar cells were studied on large number of finished cells by two independent methods: (i) standard three-point probe (TPP) and (ii) iteration technique based on the calculation of the power loss (ICPL) associated with the contact resistance of the front Ag contacts of the solar cell normalized to unit cell area. It shows that the value of specific contact resistance measured by both methods are desirably much lower than the expected value of 10−3 Ω cm2 for the screen-printed Ag metal contacts of the photovoltaic cells used for the A.M. 1.5 applications. Using the iteration, each resistive components of the solar cell normalized to unit cell area were directly evaluated. It is shown that by combining the measurements of specific contact resistance of the planar ohmic contacts and ohmic losses of the cell, it gives a direct and non-destructive diagnostic tool to qualitatively check the electrical quality of the applied Ag metal contacts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call