Abstract

Several types of implant devices have been proposed and introduced into healthcare and telemedicine systems for monitoring physiological parameters, sometimes for very long periods of time. To our disappointment, most of the devices are implanted invasively and by surgery. We often have to surgically remove such devices after they have finished their mission or before the battery becomes worn out. Wearable devices have the possibility to become new modalities for monitoring vital parameters less-invasively. However, for round-the-clock monitoring of data from sensors over long periods of time, it would be better to put them inside the body to avoid causing inconvenience to patients in their daily lives. This study tested a less invasive endoluminal approach and innovative tools (developed during our research into therapeutic capsule endoscopy) for remotely anchoring ingestible sensors to the stomach wall. Preliminary investigations are also described about wireless communication (NFC, ZigBee, and Bluetooth) for low power consumption and inductive extracorporeal power feeding wirelessly to the circuits in a phantom lined with swine gastric mucosa. Electrocardiogram and pH were monitored and those parameters were successfully transmitted by wireless communication ICs to the Internet via a portable device.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.