Abstract

A Monte Carlo technique has been developed to simulate the expected signal and the statistical noise of x-ray spectrometers that use streak cameras to achieve the time resolution required for ultrafast diagnostics of laser-generated plasmas. The technique accounts for statistics from both the photons incident on the streak camera's photocathode and the electrons emitted by the photocathode travelling through the camera's electron optics to the sensor. We use the technique to optimize the design of a spectrometer, which deduces the temporal history of electron temperature of the hotspot in an inertial confinement fusion implosion from its hard x-ray continuum emission spectra. The technique is general enough to be applied to any instrument using an x-ray streak camera.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.