Abstract

In this paper, we are concerned with the development of a general set theory using the single axiom version of Leśniewski’s mereology. The specification of mereology, and further of Tarski’s geometry of solids will rely on the Calculus of Inductive Constructions (CIC). In the first part, we provide a specification of Leśniewski’s mereology as a model for an atomless Boolean algebra using Clay’s ideas. In the second part, we interpret Leśniewski’s mereology in monadic second-order logic using names and develop a full version of mereology referred to as CIC-based Monadic Mereology (λ-MM) allowing an expressive theory while involving only two axioms. In the third part, we propose a modeling of Tarski’s solid geometry relying on λ-MM. It is intended to serve as a basis for spatial reasoning. All parts have been proved using a translation in type theory.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.