Abstract
In a new method for the determination of trace levels of chlorophenols in river waters, detection via surface-enhanced Raman scattering (SERS) is combined with recognition by a molecularly imprinted polymer (MIP). Nanoparticles of type Cu2O@Ag were synthesized by attaching silver particles to the surface of Cu2O nanoparticles. The Cu2O@Ag were then coated with a layer of a MIP that was obtained by atom transfer radical polymerization using from methacrylic acid as monomers and 2,6-dichlorophenol as the template. The morphology of Cu2O is found to be flower-like. The Cu2O@Ag-MIPs displays a strong SERS effect. Following removal of the template by rinsing with the mixture solution of methanol/acetic acid (9/1, v/v), the material was used to selectively bind 2,6-dichlorophenol, 2,4-dichlorophenol and 2,4-dichlorophenol. The SERS peak intensity at 1580cm-1 increases linearly with the concentration of the various chlorophenols in the range from 10nM to 1mM, and the detection limit is 5.8nM. The imprinting factor is 4.62. The method was applied to the analysis of (spiked) river water, with recoveries ranging from 91.8 to 115.4% and relative standard deviations of <4.5%. Graphical abstract.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have