Abstract

A combination of grand canonical Monte Carlo and molecular dynamics simulation techniques are used to study the freezing and melting of Lennard-Jones methane in several different cylindrical pores. Two different types of pore wall are considered; a strongly attractive wall, and a weakly attractive wall, each with pore diameters in the range 1.5–3.5 nm. Freezing point depression is observed in the case of the weakly attractive pores, in agreement with several experimental studies. Freezing point elevation is observed at the walls of the strongly attractive pore, but freezing point depression occurs at the center of such pores, due to geometrical constraints.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.