Abstract
Cytolytic peptides (CPs) have long been employed as broad-spectrum antibiotic agents to overcome multidrug resistance. However, the development of novel peptide drugs is still limited by the elusive molecular understanding of the membrane-lysis mechanism and modeling of CPs, especially of the short helical species. In this study, a known anticancer CP named PTP-7b (FLGALFKALSHLL) in disrupting membranes via self-assembling approach was studied by combining experiments and time-extended coarse-grained dynamic simulations. Effective membrane disintegration was induced by aggregation of the membrane-bound peptide individuals, rather than the preassembled peptide clusters. The disturbance level of lipid bilayers depended on the peptide concentrations, which was responsible for the long time-costing of PTP-7b in killing cells. On the basis of lines of simulations and energy-landscape calculations, the dynamics of membrane deformation evolving toward preliminary leakage resulted from the aggregated PTP-7b was d...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.