Abstract
There is evidence to suggest that eukaryotic genomes are subject to frequent insertions and deletions of non-coding DNA. This may lead to a gradual increase or decrease in genome size, or to a dynamic equilibrium in which the overall size remains constant. We argue, however, that there is a bias favouring an accumulation of non-coding DNA in the proximity of genes. Such bias causes a progressive change in genome structure regardless of whether the overall genome size increases, decreases or remains constant. We show that this change may serve as a 'molecular clock', supplementing that provided by nucleotide substitution rates.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.