Abstract

Understanding the microscopic mechanism of molecule-surface interaction is of great importance in the study of chemical dynamics. Yet, it remains challenging to experimentally acquire quantum state resolved results, particularly the results related to different degrees of freedom of the reactants. Here, we report the designand performance of a new apparatus for molecule-surface dynamics studies, which enable the measurement of quantum state-resolved adsorption. A continuous narrow-linewidth infrared laser source and molecular beam unit were developed and employed in this new apparatus to achieve independent control on different degrees of freedom (translation, vibration, and rotation) of the molecule. Preliminary results on hydrogen and hydrogen chloride adsorption on the Cu (111) surface were also presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call