Abstract
The manufacturing process is the last opportunity to build an ideal design reliability index into a product. With the advancement of intelligent manufacturing technology, the concept of quality evolves from conformance to fitness for use, which emphasizes that reliability should be built into product with quality control. To effectively implement reliability assurance in the manufacturing process, it is necessary to accurately identify the vital few characteristics that are critical to reliability. Thus, a heuristic key reliability characteristic (KRC) analysis in manufacturing model fusing big quality data is proposed. First, on the basis of the fusion big quality data in manufacturing-by-manufacturing system Reliability-operational process Quality- output product Reliability (RQR) chain, a data driven KRC analysis model is proposed, and a reliability proactive control framework in manufacturing driven by KRC is expounded. Second, considering mass quality and reliability data, an effective KRC identification method based on data mining using multi-objectives genetic algorithm (MOGA) is established. Third, considering manufacturing data and product failure risk, an extended risk priority number (RPN) for KRC ranking is proposed. Finally, an example of an insulating base of subway locomotive is provided to verify the proposed approach.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.