Abstract

In extracellular neural electrophysiology, individual spikes have to be assigned to their cell of origin in a procedure called "spike sorting". Spike sorting is an unsupervised problem, since no ground-truth information is generally available. Here, we focus on improving spike sorting performance, particularly during periods of high synchronous activity or so-called "bursting". Bursting entails systematic changes in spike shapes and amplitudes and remains a challenge for current spike sorting schemes. We use realistic simulated bursting recordings of high-density micro-electrode arrays (HD-MEAs) and we present a fully automated algorithm based on template matching with a focus on recovering missed spikes during bursts. To compare and benchmark spike-sorting performance after applying our method, we used ground-truth information of simulated recordings. We show that our approach can be effective in improving spike sorting performance during bursting. Further validation with experimental recordings is necessary.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.