Abstract

A new modular recurrent neural network (MRNN)-based method for continuous Mandarin speech recognition (CMSR) is proposed. The MRNN recognizer is composed of four main modules. The first is a sub-MRNN module whose function is to generate discriminant functions for all 412 base-syllables. It accomplishes the task by using four recurrent neural network (RNN) submodules. The second is an RNN module which is designed to detect syllable boundaries for providing timing cues in order to help solve the time-alignment problem. The third is also an RNN module whose function is to generate discriminant functions for 143 intersyllable diphone-like units to compensate the intersyllable coarticulation effect. The fourth is a dynamic programming (DP)-based recognition search module. Its function is to integrate the other three modules and solve the time-alignment problem for generating the recognized base-syllable sequence. A new multilevel pruning scheme designed to speed up the recognition process is also proposed. The whole MRNN can be trained by a sophisticated three-stage minimum classification error/generalized probabilistic descent (MCE/GPD) algorithm. Experimental results showed that the proposed method performed better than the maximum likelihood (ML)-trained hidden Markov model (HMM) method and is comparable to the MCE/GPD-trained HMM method. The multilevel pruning scheme was also found to be very efficient.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.