Abstract
A modular relation of the form $F(\alpha, w)=F(\beta, iw)$, where $i=\sqrt{-1}$ and $\alpha\beta=1$, is obtained. It involves the generalized digamma function $\psi_w(a)$ which was recently studied by the authors in their work on developing the theory of the generalized Hurwitz zeta function $\zeta_w(s, a)$. The limiting case $w\to0$ of this modular relation is a famous result of Ramanujan on page $220$ of the Lost Notebook. We also obtain asymptotic estimate of a general integral involving the Riemann function $\Xi(t)$ as $\alpha\to\infty$. Not only does it give the asymptotic estimate of the integral occurring in our modular relation as a corollary but also some known results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.