Abstract

Using a novel and versatile capillary microfluidic flow-focusing device we fabricated monodisperse drug-loaded nanoparticles from biodegradable polymers. A model amphiphilic drug (dexamethasone) was incorporated within the biodegradable matrix of the particles. The influence of flow rate ratio, polymer concentration, and microreactor-focusing channel dimensions on nanoparticles’ size and drug loading has been investigated. The microfluidic approach resulted in the production of colloidal polymeric nanoparticles with a narrow size distribution (diameters ranging between 35 and 350 nm) and useful morphological characteristics. This technique allows the fast, low cost, easy, and automated synthesis of polymeric nanoparticles, therefore it may become a useful approach in the progression from laboratory scale to pilot-line scale processes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call