Abstract

The influence of inter-pulse delay times (0–20 ns) between two collinear sequential nanosecond pulses on the production and size properties (mean size and size distribution) of colloidal nanoparticles prepared by pulsed laser ablation of a silver target in a distilled water medium has been studied. Various laser fluences at different inter-pulse delay times between two collinear pulses were used. Furthermore, for a better understanding of the effect of the double-pulse and single-pulse mode, experiments were performed. The characterization of the synthesized colloidal nanoparticles was investigated using scanning electron microscopy (SEM) and UV–vis absorption spectroscopy. Our results showed that 5 ns time-delayed double-pulse laser ablation results in the production of nanoparticles with the highest concentration among the other time-delayed ablation experiments and even more than single-pulse-mode experiments. It also found that using a double-pulse approach with inter-pulse delay times in the range of 0–20 ns leads to the production of nanoparticles with smaller mean sizes and narrower size distributions in comparison to single-pulse-mode laser ablation. The effect of time overlapping between two pulses in the case of double-pulse ablation was analyzed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call