Abstract
Abstract This paper proposes an extended Petri net formalism as a suitable language for composing optimal scheduling problems of industrial production processes with real and binary decision variables. The proposed approach is modular and scalable, as the overall process dynamics and constraints can be collected by parsing of all atomic elements of the net graph. To conclude, we demonstrate the use of this framework for modeling the moulding sand preparation process of a real foundry plant.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.