Abstract

<p style='text-indent:20px;'>In this paper, we consider a joint pricing and inventory problem with promotion constrains over a finite planning horizon for a single fast-moving consumer good under monopolistic environment. The decision on the inventory is realized through the decision on inventory replenishment, i.e., decision on the quantity to be ordered. The demand function takes into account all reference price mechanisms. The main difficulty in solving this problem is how to deal with the binary logical decision variables. It is shown that the problem is equivalent to a quadratic programming problem involving binary decision variables. This quadratic programming problem with binary decision variables can be expressed as a series of conventional quadratic programming problems, each of which can be easily solved. The global optimal solution can then be obtained readily from the global solutions of the conventional quadratic programming problems. This method works well when the planning horizon is short. For longer planning horizon, we propose a multi-stage method for finding a near-optimal solution. In numerical simulation, the accuracy and efficiency of this multi-stage method is compared with a genetic algorithm. The results obtained validate the applicability of the constructed model and the effectiveness of the approach proposed. They also provide several interesting and useful managerial insights.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call