Abstract

Recent studies indicate that the optimum separation performances achieved by multiple stage cleaning using various column flotation technologies and single stage cleaning using a Packed-Flotation Column are superior to the performance achieved by the traditional release procedure, especially in terms of pyritic sulfur rejection. This superior performance is believed to be the result of the advanced flotation mechanisms provided by column flotation technologies. Thus, the objective of this study was to develop a suitable process utilizing the advanced froth flotation mechanisms to characterize the true flotation response of a coal sample. This investigation resulted in the development of a modified coal flotation characterization procedure, termed as the Advanced Flotation Washability (AFW) technique. The apparatus used for this procedure is a batch operated Packed-Column device which provides enhanced selectivity due to a plug-flow environment and a deep froth zone. The separation performance achieved by the AFW procedure was found to be superior to those produced by the conventional tree and release procedures for three nominally -100 mesh coal samples and two micronized samples. The largest difference in separation performance was obtained on the basis of product pyritic sulfur content. A comparison conducted between the AFW and the release procedures at an 80% recovery value showed that the AFW technique provided a 19% improvement in the reduction of pyritic sulfur. For an Illinois No. 5 coal sample, this improvement corresponded to a reduction in pyritic sulfur content from 1.38% to 0.70% or a total rejection of 66%. Micronization of the sample improved the pyritic sulfur rejection to 85% while rejecting 92% of the ash-bearing material. In addition, the separation performance provided by the AFW procedure was superior to that obtained from multiple cleaning stages using a continuous Packed-Column under both kinetic and carrying-capacity limiting conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call