Abstract
ABSTRACT In this article, we consider an inverse source problem for Poisson equation in a strip domain. That is to determine source term in the Poisson equation from a noisy boundary data. This is an ill-posed problem in the sense of Hadamard, i.e., small changes in the data can cause arbitrarily large changes in the results. Before we give the main results about our proposed problem, we display some useful lemmas at first. Then we propose a modified quasi-reversibility regularization method to deal with the inverse source problem and obtain a convergence rate by using an a priori regularization parameter choice rule. Numerical examples are provided to show the effectiveness of the proposed method.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have