Abstract
The variability of the data and the incomplete knowledge of the true physics require the incorporation of randomness into the formulation of mathematical models. In this setting, the deterministic numerical methods cannot capture the propagation of the uncertainty from the inputs to the model output. For some problems, such as the Burgers' equation (simplification to understand properties of the Navier–Stokes equations), a small variation in the parameters causes nonnegligible changes in the output. Thus, suitable techniques for uncertainty quantification must be used. The generalized polynomial chaos (gPC) method has been successfully applied to compute the location of the transition layer of the steady‐state solution, when a small uncertainty is incorporated into the boundary. On the contrary, the classical perturbation method does not give reliable results, due to the uncertainty magnitude of the output. We propose a modification of the perturbation method that converges and is comparable with the gPC approach in terms of efficiency and rate of convergence. The method is even applicable when the input random parameters are dependent random variables.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.