Abstract

The coupling and spatial variation of range and azimuth parameters is the biggest challenge for bistatic forward-looking SAR (BFSAR) imaging. In contrast with the monostatic SAR and translational invariant bistatic SAR (TI-BSAR), the range cell migration (RCM), and Doppler parameters of high-speed bistatic forward-looking SAR (HS-BFSAR) have two-dimensional spatial variation characteristics, which makes it difficult to obtain SAR images with satisfactory global focusing. Firstly, based on the configuration of the spaceborne illuminator and high-speed forward-looking receiving platform, the accurate range-Doppler domain expression of the echo signal is derived in this paper. Secondly, using this analytical expression, a range nonlinear chirp scaling (NLCS) is proposed to equalize the RCM and equivalent range frequency modulation (FM) rate so that they can be uniformly processed in the two-dimensional frequency domain. Next, in the azimuth processing, the proposed method decomposes the Doppler contribution of the transmitter and receiver, respectively. Then, an azimuth NLCS is used to eliminate the spatial variation of the azimuth FM rate. Finally, a range-dependent azimuth filter is constructed to achieve azimuth compression. Simulation results validate the efficiency and effectiveness of the proposed algorithm.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call