Abstract

With appropriate geometry configurations, bistatic synthetic aperture radar (SAR) can break through the limitations of monostatic SAR on forward-looking imaging. Thanks to such a capability, bistatic forward-looking SAR (BFSAR) has extensive potential applications, such as self-navigation and self-landing. In the mode of BFSAR with a stationary transmitter (ST-BFSAR), the two-dimensional spatial variation makes it difficult to use traditional data focusing algorithms. In this letter, an imaging algorithm based on keystone transform and nonlinear chirp scaling (NLCS) is proposed to deal with this problem. Keystone transform is used to remove the spatial variation of range cell migration. NLCS can eliminate the variation of azimuth reference function. Numerical simulations show that by combining first-order keystone transform and azimuth NLCS operation, the raw data of ST-BFSAR can be well imaged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.