Abstract
The inflection point of spectral reflectance of crop in the red edge region (680–780 nm) is termed as the red edge position (REP), which is sensitive to crop biochemical and biophysical parameters. We propose a technique for automatic detection of four dynamic wavebands, i.e. two in the far-red and two in the near-infrared (NIR) region from hyperspectral data, for REP estimation using the linear extrapolation method. A field experiment was conducted at the SHIATS Farm, Allahabad, India, with four levels of nitrogen and irrigation treatments to assess the sensitivity of REP towards crop stress. A correlation analysis was carried out between REPs and different biophysical parameters, such as leaf area index (LAI) and chlorophyll content index (CCI), recorded in each plot at 50, 70, and 90 days after sowing of wheat crop under the field experiment. The inter-comparison among different REP extraction techniques revealed that the proposed technique, i.e. the modified linear extrapolation (MLE) method, has a better ability to distinguish different crop stress conditions. REPs extracted using the MLE technique showed high correlations with a wide range of LAI, CCI, and LAI × CCI, being comparable with results obtained using the traditional linear extrapolation and polynomial fitting techniques. The behaviour of the new techniques was found to be stable at both narrower and broader bandwidth, i.e. 2 and 10 nm. A new red-edge-based index, i.e. area under REP (AREP), was used to detect the cumulative stress over wheat crop by utilizing the REP and its rate of change information at different crop growth stages. A high coefficient of determination (R2 = 0.89) was found between AREP and dry grain yield (Q ha−1) up to 50 Q ha−1 of wheat crop, whereas, beyond this range the relationship was found to be diminishing.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have