Abstract

Constitutive model is the most commonly used method to describe the material deformation behavior during machining process. This paper aims to investigate the material dynamic deformation during high speed machining of 7050-T7451 aluminum alloy with the aid of split Hopkinson pressure bar (SHPB) system and finite element (FE) analysis. First, the quasi static and dynamic compression behaviors of 7050-T7451 aluminum alloy are tested at different loading conditions with a wide range of strain rates (0.001 s, 4000 s, 6000 s, 8000 s, and 12,000 s) and temperatures (room temperature, 100 °C, 200 °C, 300 °C, and 400 °C). The influences of temperature on strain and strain rate hardening effects are revealed based on the flow stress behavior and microstructural alteration of tested specimens. Second, a modified Johnson–Cook (JCM) constitutive model is proposed considering the influence of temperature on strain and strain rate hardening. The prediction accuracies of Johnson–Cook (JC) and JCM constitutive models are compared, which indicates that the predicted flow stresses of JCM model agree better with the experimental results. Then the established JC and JCM models are embedded into FE analysis of orthogonal cutting for 7050-T7451 aluminum alloy. The reliabilities of two material models are evaluated with chip morphology and cutting force as assessment criteria. Finally, the material dynamic deformation behavior during high speed machining and compression test is compared. The research results can help to reveal the dynamic properties of 7050-T7451 aluminum alloy and provide mechanical foundation for FE analysis of high speed machining.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.