Abstract

The seismic wave propagation across rock masses with thin-layer joints by modified displacement discontinuity method (M-DDM) is of great importance for geophysical surveys. M-DDM introduces a frequency-dependent effective stiffness to describe the dynamic stress–closure relationship of a thin-layer joint. The study verifies the accuracy of M-DDM in studying seismic wave propagation across rock masses with thin-layer joints. Subsequently, we evaluate the influence of the joint thickness and the incident wave frequency on M-DDM accuracy. We analyze the prediction error of the transmission coefficient obtained with M-DDM. The results demonstrate that the frequency-dependent effective joint stiffness increases with increasing incident wave frequency and decreases with increasing joint thickness. Compared with the traditional DDM, M-DDM more accurately predicts the transmission coefficients of seismic waves propagating across thin-layer joints. The transmission coefficient prediction error obtained based on M-DDM increases with increasing joint thickness and incident wave frequency and is always smaller than that obtained based on DDM. Therefore, our proposed M-DDM can be used to effectively investigate seismic wave propagation across rock masses with thin-layer joints.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call