Abstract
A rock mass includes a number of joints, which govern the mechanical behavior of the rock mass and greatly affect stress wave propagation. Generally, joints do not parallel with each other, resulting in multiple wave reflections between joints and complex wave propagation process in rock masses. The present study presents an approach to analyze stress wave propagation through a rock mass with two non-parallel joints when the angle between the two joints is <10°. For incident P-wave impinging on this kind of rock mass, multiple reflections take place between the two joints. Meanwhile, transmitted waves are generated and propagate successively away from the joints. The mathematical expressions for P-wave propagation across the two joints are established in time domain by analyzing the wave field in the rock mass. By comparing with the result from numerical simulation, the new approach is proved to be effective to analyze wave propagation across two non-parallel joints, where the influence of joint tips on wave propagation is neglected. Parametric studies show that the joint stiffness, joint angle and frequency of incident wave have different effects on transmission and reflection coefficients.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.