Abstract
[1] This work presents the results of a local empirical model that describes the behavior of the ionospheric F2 region peak. The model was developed using nearly 25 years of incoherent scatter radar (ISR) measurements made at the Arecibo Observatory (AO) between 1985 and 2009. The model describes the variability of the F2 peak frequency (foF2) and F2 peak height (hmF2) as a function of local time, season, and solar activity for quiet-to-moderate geomagnetic activity conditions (Kp < 4+). Our results show that the solar activity control of hmF2 and foF2 over Arecibo can be better described by a new proxy of the solar flux (F107P), which is presented here. The variation of hmF2 parameter with F107P is virtually linear, and only a small saturation of the foF2 parameter is observed at the highest levels of solar flux. The winter anomaly and asymmetries in the variation of the modeled parameters between equinoxes were detected during the analyses and have been taken into account by the AO model. Comparisons of ISR data with international reference ionosphere (IRI) model predictions indicate that both CCIR and URSI modes overestimate foF2 during the daytime and underestimate it at night. As expected, this underestimation is not observed in the AO model. Our analyses also show that the hmF2 parameter predicted by the IRI modes shows a saturation point, which causes hmF2 to be underestimated at high solar activity. The underestimation increases with higher levels of solar activity. Finally, we also found that IRI predictions of the seasonal variability of foF2 and hmF2 over Arecibo can be improved by using a small correction that varies with solar activity and local time.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.