Abstract
We have investigated the solar activity dependence of the electron density at equatorial and low latitudes using 6 years (a) of measurements between 1 August 2000 and 1 August 2006 from CHAMP and compared it with the international reference ionosphere (IRI) model. The solar activity dependence observed by CHAMP at 400 km altitude exhibits significant variation with latitude, season, and local time. First, the electron density in the crest regions of the equatorial ionization anomaly (EIA) grows roughly linearly from solar minimum to solar maximum, with a higher growth rate than that in the EIA trough region. Second, the solar activity dependence in the EIA crest regions varies strongly with season. The growth rate of the electron density with increasing solar activity around equinoxes is about 1.5 to 2 times greater than that near solstices. Third, the solar activity dependence of the EIA structure varies significantly with local time. In the noon sector the crest‐to‐trough ratio (CTR) obtained at 400 km altitude varies within only a small range between 1.14 and 1.43 from solar minimum to solar maximum. In the postsunset local time sector, however, the CTR grows remarkably with solar activity level, reaching values of above 3.9 at solar maximum. These differences are attributed to the different solar activity dependence of the vertical plasma drift in corresponding local time sectors. The IRI model was found to reproduce the equatorial electron density well near 400 km in the noon sector at all solar activity levels. However, it significantly overestimates it in the postsunset to premidnight sector at high solar activity levels. The major cause for this overestimation has been found to be the IRI's inadequate representation of the F2 layer maximum height (hmF2) in this sector, while the IRI's lack of equatorial spread F seems to play only a minor role.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.