Abstract

AbstractA new method of estimating mesospheric temperature has recently been proposed by utilizing an apparent linear relation between atmospheric temperatures and full widths at half maximum (FWHMs) of meteor height distributions measured by a meteor radar (MR). However, the new method assumes that the meteor height distribution is dominantly dependent on the atmospheric conditions, rather than on meteoroid characteristics (mass and velocity). In order to verify this assumption, we have developed a meteor ablation model and applied it to the observed parameters by a MR at King Sejong Station (62.2°S, 58.8°W). The simulation results show that the FWHM of meteor height distribution increases linearly with the mesospheric temperature and its linear relation matches well with the observed relation. We found that the seasonal variation of meteor velocity distributions is significant but has only little effect on the variation of the height distribution. We also found that the observed characteristics of meteors are consistent with a Gaussian distribution of logarithmic masses, and this distribution is nearly invariable throughout the year with the average peak value of . Thus, we conclude that observed meteor height distributions are mainly dependent on the mesospheric temperature, and can be used as a mesospheric temperature indicator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.