Abstract

Plant cell suspensions of grape cells (Vitis vinifera L. cv. Gamay Fréaux) were grown in shake flasks operated both in the batch and semicontinuous mode. A mathematical model was developed to describe grape cell growth, sucrose uptake, and secondary metabolite (anthocyanin) production. Parameters were estimated from batch studies data. The model was able to predict results for semicontinuous experiments by only modifying the value of four of these parameters. The modified parameters (maximum specific rate of biomass production, maximum specific rate of substrate consumption for maintenance, maximum specific rate of anthocyanin production, and degradation constant of anthocyanins) were related to the kinetics rather than to the yield of the process. The model introduces the concept of primary and secondary metabolism substrate concentration-dependent competition for precursors. Further, the model was able to predict the evolution of the cell system when substrate is scarce, as the value of the different kinetic constants determines the portion of substrate that is used for biomass production, secondary metabolite production, and cell maintenance. (c) 1995 John Wiley & Sons, Inc.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call