Abstract

Emissions of ozone and its by-products from ozonolysis on human surfaces lead to indoor air pollution. However, the spatiotemporal distribution of such emissions in indoor environments remains unclear, which may introduce bias when assessing human exposure to ozone and ozonolysis byproducts. This study developed a computational fluid dynamics model to describe the physical and chemical processes involved in the emission of ozone-dependent volatile organic compounds from the human body. The results showed that the reaction probability of ozone in the human body depends on the ozone concentration in the bulk air. For ozone concentrations ranging from 28 ppb to 200 ppb, the reaction probabilities ranged from 5.9 × 10−5 to 1.5 × 10−4. The concentrations of ozone and ozonolysis byproducts obtained from the experimental measurements were used for model validation. The ozonolysis by-products were found to be uniformly distributed in the chamber, whereas the ozone distribution showed less uniformity. The ozone concentration near the human surface was approximately 30 %∼50 % of that in the ambient air. Overall, a model was developed to understand the effect of ozone-surface interactions on indoor air quality. This model can be applied to analyze human exposure to ozone and ozonolysis byproducts and for health risk assessment in built environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.