Abstract

Ozone and byproducts of ozone-initiated reactions are among the primary pollutants in aircraft cabins. However, investigations of the spatial distribution and reaction mechanisms of these pollutants are insufficient. This study established a computational fluid dynamics-based model to evaluate ozone and byproduct distribution, considering ozone reactions in air, adsorption onto surfaces, and byproduct desorption from surfaces. The model was implemented in an authentic single-aisle aircraft cabin and validated by measurements recorded during the aircraft cruise phase. Ozone concentrations in the supply air-dominated area were approximately 50% higher than that in the passenger breathing zone, suggesting that human surfaces represent a significant ozone sink. The deposition velocity onto human bodies was 21.83 m/h, surpassing 3.97 m/h on other cabin interior surface areas. Our model provides a mechanistic tool to analyze ozone and byproduct concentration distributions, which would be useful for assessing passenger health risks and for developing strategies for healthier aircraft cabin environments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.