Abstract

AbstractFerroelectric (FE) films, especially PZT films, have received increasing attention for microelectronic applications such as ferroelectric memory and high density DRAM. There has been significant progress in the preparation of high quality PZT films involving wet chemical and physical vapor deposition techniques. Metal-FE-metal structures, typified by Pt-PZT-Pt capacitors, are the basic building blocks for the ferroelectric devices. The leakage currents of the capacitors are known to be non-ohmic and exhibit an exponential dependence on applied voltage.The present paper presents a model based on totally depleted back-to-back Shottky barriers. Predictions based on the model can provide significant new understanding of the FE behavior of thin films. For example, the assumption of total depletion leads to the presence of a built-in field within the film which can explain the ubiquitously higher values of coercive field in FE films than found in bulk ceramics. It will be shown that the agreement between model predictions and actual device I-V characteristics of Pt-PZT-Pt capacitors is very close. Further, the model can also explain the observed hysteresis loop asymmetry and low dielectric constants of films of relaxor FE's, whose dielectric constants are much smaller than those of bulk materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call