Abstract

The gating of ion channels in biological membranes has usually been described in termsof Markov transitions between a few discrete open or closed states. Such models predict that the distributions of open and closed durations decay as a sum of exponential terms. Recent experimental data have indicated that certain channels are not easily described by these models. We show that distributions of open and closed times similar to those seen experimentally are predicted by a model that involves only one open and closed state but that assumes the activation energy of the gating process to be stochastic. This model involves only a few parameters and these have direct physical interpretations. Measurements of the correlation between the durations of successive open or closed events is shown to provide an experimental method for distinguishing between this and other models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.