Abstract

A physico-mathematical model of the gating machinery of single ionic channels in biological membranes has been developed. In the paradigm of this model, gating particles are subjected to: (i) deterministic friction force responsible for interactions of gating particles with the surrounding solution; (ii) deterministic potential force depending on the structure and conformational state of the channel pore (the latter is controlled by the transmembrane voltage V and regulates the motion of particles overcoming potential barriers on going from the closed (open) to the open (closed) state of the channel); (iii) deterministic force responsible for interactions of water molecules with hydrophobic sites in the channel pore, and, finally, (iv) stochastic thermal fluctuation force. The model affords adequate approximation of experimental data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call