Abstract
Introduction. The readiness of all levels of subsystems that comprise the Unified State System for Emergency Prevention and Liquidation (USSEPL) is one of the most important characteristics that determine its effectiveness. To support decision-making at the upper levels of the management hierarchy, it is important to have a set of models that adequately represent the dependence between key response efficiency indicators and particular indicators of lower levels of the system (fire and rescue departments). In most cases, a regulatory approach to the construction of such models, by virtue of which analysts set their structure and parameters, turns out to be unproductive due to their non-adaptive nature in the context of dynamically changing external conditions and technological capabilities of modern devices. The use of an approach based on solving inverse problems that close the feedback loop and provide for an adaptive adjustment of parameters and the structure of models, ensures the current adequacy of models amid changing conditions.The relevance of the study lies in the development of a technology for constructing polynomial models that allow to assess the USSEPL response effectiveness based on estimated indicators of readiness of subsystems at lower levels obtained using expert evaluation techniques (testing) by means of internal control.Goals and objectives. The aim of the work is to build and test the technology for developing analytical polynomial models that allow to adequately assess performance indicators of the USSEPL response depending on the readiness indicators of lower-level subsystems (fire and rescue departments). In compliance with this goal, the tasks of choosing the type of model and methods of obtaining the necessary initial data are also set.Methods. The study uses methods of analysis of hierarchically organized systems, mathematical statistics, simulation modelling, and methods of expert evaluation. The research is backed by materials from domestic and foreign publications.Results and discussion. The proposed method of constructing an efficiency model of the USSEPL operation, relying on the readiness of subsystems, serves as the basis for constructing models that can take into account other indicators of subsystems.Conclusions. The solution to the problem of constructing a polynomial model, that features dependence between the USSEPL response efficiency and lower-level readiness indicators, serves as the basis for other similar models that will support decision making systems.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have