Abstract

AbstractThe influence of viruses on nutrient cycles and energy transfer in aquatic systems is important, yet still being determined. We developed a dynamic model to capture the population dynamics of algal hosts and their viruses. The model was fitted to literature data of population dynamics during laboratory one‐step infection experiments. Model parameters that underlie population dynamics were quantified in diverse algal groups, covering 7 different algal classes, 14 different host genera, and 32 different virus genotypes. The hypothesis that trade‐offs exist between traits that underlie population dynamics was evaluated. We report a possible virus size‐dependent trade‐off between the rate at which viruses can initiate infection, and the efficiency of carbon transfer from hosts to viruses upon lysis. We hypothesize that slower rates of infection in large viruses, due to slower rates of molecular diffusion, are compensated by enhanced utilization of host resources. Our approach provides a quantitative trait‐framework for understanding and quantifying virus activity in diverse natural communities.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call