Abstract

Abstract In this work, we develop a linear model ordinary differential equation (ODE) to study the parasitic capillary ripples present on steep Stokes waves when a small amount of surface tension is included in the formulation. Our methodology builds upon the exponential asymptotic theory of Shelton & Trinh (J. Fluid Mech., vol. 939, 2022, A17), who demonstrated that these ripples occur beyond-all-orders of a small-surface-tension expansion. Our model equation, a linear ODE forced by solutions of the Stokes wave equation, forms a convenient tool to calculate numerical and asymptotic solutions. We show analytically that the parasitic capillary ripples that emerge in solutions to this linear model have the same asymptotic scaling and functional behaviour as those in the fully nonlinear problem. It is expected that this work will lead to the study of parasitic capillary ripples that occur in more general formulations involving viscosity or time-dependence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call