Abstract

While functional electrical stimulation has been applied to treat a variety of neurological disorders, it cannot mimic function that is primarily achieved using neurochemical means. In this work, we present a neurotransmitter-based prosthetic interface in the form of a flexible microdevice that selectively releases chemical pulses through an aperture in a polymer membrane. The release profiles through the aperture are controlled by microfluidic switching in an underlying channel network. The profiles have been characterized using fluorescence microscopy as a function of pulse duration and frequency. Hippocampal neurons were cultured on the microdevices and cell stimulation via glutamate delivery was detected using calcium imaging. The release properties could be tuned to repeatedly elicit discrete action potentials in cells seeded proximate to the aperture, including single cell stimulation at 2 Hz. This model neural interface based on functional chemical stimulation may provide the biomimetic platform necessary to restore physiological pathways and function that electrical stimulation cannot fundamentally address.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.