Abstract
Functional electrical stimulation (FES) may be able to augment functional arm and hand movement after stroke. Poststroke neuroprostheses that incorporate voluntary effort and FES to produce the desired movement must consider how forces generated by voluntary effort and FES combine, even in the same muscle, in order to provide an appropriate level of stimulation to elicit the desired assistive force. The goal of this study was to determine whether the force produced by voluntary effort and FES add together independently of effort or whether the increment in force depends on the level of voluntary effort. Isometric force matching tasks were performed under different combinations of voluntary effort and FES. Participants reached a steady level of force, and while attempting to maintain a constant effort level, FES was applied to augment the force. Results indicate that the increment in force produced by FES decreases as the level of initial voluntary effort increases. Potential mechanisms causing the change in force output are proposed, but the relative contribution of each mechanism is unknown.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: The Journal of Rehabilitation Research and Development
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.