Abstract
A model for the initiation of hydride sites on uranium metal is described for conditions of constant hydrogen pressure. The model considers variations in hydrogen permeation through the surface oxide film due to intrinsic variations in the oxide thickness. It is proposed that thin areas of surface oxide favour enhanced hydrogen permeation through the oxide and lead to the more rapid initiation of hydride sites. The time and spatial dependence of the hydrogen concentration field in the metal underlying thin areas of oxide is calculated in terms of the local oxide film thickness, the hydrogen diffusion coefficients in the oxide and metal and the hydrogen concentration in the oxide at the gas–oxide interface. The time to precipitate hydride at any location is calculated by assuming that precipitation occurs once the hydrogen concentration in the metal attains the terminal solubility limit of the metal at the prevalent temperature. The model is compatible with the reported temperature and pressure dependence of the hydride induction time. The model can also explain observations such as precipitation of hydride at or beneath the oxide–metal interface and the arrested growth of hydride sites. Finally, an expression is derived for the number of hydride sites initiated on an entire sample surface in any given time by assuming a Gaussian oxide film thickness distribution over the entire sample surface.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have