Abstract

ABSTRACT Separating recyclables from municipal solid waste (MSW) before collection reduces not only the quantity of MSW that needs to be treated but also the depletion of resources. However, the participation of residents is essential for a successful recycling program, and the level of participation usually depends on the degree of convenience associated with accessing recycling collection points. The residential accessing convenience (RAC) of a collection plan is determined by the proximity of its collection points to all residents and its temporal flexibility in response to resident requirements. The degree of proximity to all residents is determined by using a coverage radius that represents the maximum distance residents need to travel to access a recycling point. The temporal flexibility is assessed by the availability of proximal recycling points at times suitable to the lifestyles of all residents concerned. In Taiwan, the MSW collection is implemented at fixed locations and at fixed times. Residents must deposit their garbage directly into the collection vehicle. To facilitate the assignment of collection vehicles and to encourage residents to thoroughly separate their recyclables, in Taiwan MSW and recyclable materials are usually collected at the same time by different vehicles. A heuristic procedure including an integer programming (IP) model and ant colony optimization (ACO) is explored in this study to determine an efficient two-shift collection plan that takes into account RAC factors. The IP model has been developed to determine convenient collection points in each shift on the basis of proximity, and then the ACO algorithm is applied to determine the most effective routing plan of each shift. With the use of a case study involving a city in Taiwan, this study has demonstrated that collection plans generated using the above procedure are superior to current collection plans on the basis of proximity and total collection distance. IMPLICATIONS RAC is essential to the achievement of a successful tandem MSW and recyclable material collection plan. This study has proposed an optimization model and a metaheuristic tool to determine the routing plan. Through a real case study, a two-shift routing/scheduling plan is obtained by using the proposed procedure, which is to be superior to the existing collection plan. In short, local authorities that propose to determine a two-shift MSW and recyclable material collection plan should consider the proposed model as a basis of their operations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.