Abstract
Observational tests of a model for the formation of the Local Group are presented and analyzed in which the mass concentration grows by gravitational accretion of local-pressure matter onto two seed masses in an otherwise homogeneous initial mass distribution. The evolution of the mass distribution is studied in an analytic approximation and a numerical computation. The initial seed mass and separation are adjusted to produce the observed present separation and relative velocity of the Andromeda Nebula and the Galaxy. If H(0) is adjusted to about 80 km/s/Mpc with density parameter Omega = 1, then the model gives a good fit to the motions of the outer members of the Local Group. The same model gives particle orbits at radius of about 100 kpc that reasonably approximate the observed distribution of redshifts of the Galactic satellites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.