Abstract

A model for stellar convection zones based on linear convective modes using a nonlocal mixing length theory is developed to study the spectral line asymmetries and the line shifts resulting from convective motions in the stellar photospheric region. The amplitudes of these linear convective modes is estimated by requiring the convective flux due to a linear superposition of such modes to reproduce the convective flux in the mixing length model. To study the spectral line asymmetries the convective mode with the largest amplitude in the photospheric line formation region is chosen to represent the stellar velocity field and the accompanying intensity fluctuations. Synthetic spectral line profiles are obtained by summing locally symmetric profiles over the stellar disk according to the local Doppler velocity and intensity fluctuations. The resulting line bisector shapes and the line shifts are compared with observations for α-Cen B. It is found that while the simple model proposed here can explain either the line shifts or the line bisector shape reasonably well, it fails to explain both these characteristics simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.