Abstract

Most design methods for road pavements require the design traffic, based on the transformation of the traffic spectrum, to be calculated into a number of equivalent passages of a standard axle using the equivalent axle load factors (EALFs). In general, these factors only consider the type of axle (i.e. single, tandem or tridem), but they do not consider the type of wheel on the axles, i.e. single or dual wheel. The type of wheel has an important influence on the calculation of the design traffic. The existing design methods assume that the EALFs are valid for all pavement structures and do not consider the thickness and stiffness of the pavement layers. This paper presents the results of the development of a model for the calculation of the EALFs considering the type of axle, the type of wheel and the constitution of the pavement. The model was developed based on the tensile strain at the bottom of the asphalt layer that is responsible for bottom-up cracking in asphalt pavement, which is the most widely considered distress mode for flexible road pavements. The work developed in this study also presents the influence of the type of wheel (single and dual) on pavement performance. The results of this work allowed the conclusion that the EALFs for single wheels are approximately 10 times greater than those for a dual wheel. This work also proposes average values for the EALFs. An artificial neural network was developed to calculate the EALFs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call